讓物聯網邊緣自行管理
當今的物聯網客戶期望能以邊緣運算的成本及延遲目標,實現集中式雲端架構的備援性、靈活性和可擴充性。如果遠端解決方案需具高度的可靠性,則解決方案應該具有功能強大的備用功能。如果一個端點失去連接,它應仍能夠繼續操作,直到重新建立連接為止; 斷電並不表示資料會遺失。
然而,物聯網邊緣節點卻是單點故障的代表,節點因為失去連接、供電不穩定或硬體故障,任何時間都可能發生故障。而且與雲端資料中心不同,物聯網邊緣節點的分散式特性代表如果確實發生故障,IT 人員可能幾天或幾週內都無法有所因應。
隨著企業的期望與營業邊緣的現況不斷融合,物聯網系統設計師正在藉助超融合基礎架構(HCI)尋找折衷方案。
最佳的雲端與邊緣運算
HCI 是一種物聯網架構,可將類似資料中心的資源驅動到邊緣(圖 1)。通過將類似資料中心的運算、網路與儲存資源移至更接近邊緣應用程式或一直到邊緣本身,HCI 可在分散式端點中提供雲端效能。
HCI 硬體的範例包括搭載 Intel® Core™ 或 Intel Atom® 處理器的高效能邊緣閘道、會在未來 5G 網路中佔據重要地位的行動邊緣運算基地台、及已部署在內部物聯網使用案例中的搭載 Intel® Xeon® 的 uCPE 伺服器。請閱讀「SD-WAN 與 uCPE:簡介」,以進一步瞭解。
這些平台由於可支援多核心處理器、大容量儲存空間與虛擬化技術,因此在遠端物聯網部署中變得愈來愈受歡迎。這些平台可提供:
- 透過在虛擬機(VM)中代管冗餘工作負載來避免硬體故障及各種故障
- 在邊緣執行分析的能力,因此即使失去雲端連接也可以繼續正常作業
- 未來有機會透過新的應用程式與服務更新邊緣部署
當然,大多數 HCI 平台都不支援現成的 OT 需求。例如,遠端物聯網邊緣部署往往需要:
- 在出現系統故障、新增或更動時,自動重新配置或自我修復的能力
- 即使整個實體節點發生故障也能繼續作業的能力
- 裸機效能與原生硬體相當,甚至對於在 VM 中執行的應用程式亦然
需要智慧軟體來實現這些可靠性與效能上的特色。NodeWeaver 邊緣叢集執行平台就是這樣一種解決方案,它將賦予在邊緣運作的 HCI 系統這些功能。
讓節點自行管理
NodeWeaver 是一種編排與管理解決方案,可將多個端點「編入」到大型、虛擬化邊緣運算基礎架構中。這表示您可以在完全獨立的實體節點上將工作負載部署在 VM 中,如果一個端點發生故障,其應用程式仍可繼續在基礎架構中的其他位置執行。
每個節點都在整合了分散式檔案系統、軟體定義網路 (SDN)以及虛擬化元件 ,並搭載以裸機運行 x86 目標的作業系統 (圖 2)。整個堆疊僅消耗 4 GB 記憶體,因此適合大多數 HCI 系統。
虛擬網路是用於將這些節點加入叢集,叢集可包含 2 到 25 個節點。)然後,分散式檔案系統會從一個節點複製應用程式資料(或稱「區塊」),並使用一種隨機過程將資料傳輸到其他節點中的 VM,來將這些區塊分配到具有效能最高、可用儲存空間最大的節點。
為了確保區塊始終可用,NodeWeaver 會執行一個檢查整個叢集的程序。如果該程序發現某個區塊丟失或損壞,它會指示檔案系統協調器在叢集中的其他位置複製一個新區塊。例如,如果儲存磁碟發生故障或當機,NodeWeaver 便可透過將另一個作業資源上的新區塊實體化來「修復」系統。無需使用者干預。
透過此程序, NodeWeaver 可以找出是否有新增的資源,或者管理員是已對現有資源有所更動。
免動手即時虛擬化
如上所述,NodeWeaver 會在實體上和地理上分散的節點之間建立了一個完全虛擬化的環境。因此,請務必注意,應用程式不會將節點視為個別的資源。相反地,他們將整個基礎架構視為資源匯聚之處。
然而,這不表示每個節點上都有無限的資源。
NodeWeaver 使用自主的負載平衡器確保在此環境中能有效執行工作負載。負載平衡器採用了名為動態適應性的功能,不斷地對整個叢集中執行的各種工作負載進行效能標竿測試。接著,它會根據服務品質(QoS) 需求在最有效率的可用硬體上排定工作負載。這個硬體可包括 x86 CPU、GPU、FPGA,甚至是 Intel® Movidius™ 加速器。
此外,底層的 NodeWeaver OS 提供了彈性的即時保證,使工作負載能以接近裸機的效能執行。同樣地,這無需人力干預即可達成。
人工智慧能否進一步將邊緣自動化?
為了滿足物聯網客戶對備援能力、靈活性和可擴充性的期望,物聯網系統設計師必須在設計端點時考慮到雲端功能。這不僅可以避免單點故障,還能使自主邊緣環境無限期運行,即使沒有本機 IT 支援亦然。
然而,如果在這些自主邊緣環境加入了人工智慧,它們還能達成什麼目標呢?這樣的平台可以長時間監控硬體的效能,並預測磁碟機或軟體何時會發生故障,維修技術人員可以依此將自己的服務排程最佳化。諸如 NodeWeaver 之類的平台已經開始整合能實現此目標的概率引擎。
讓邊緣自行管理。