Skip to main content

AI • 物聯網 • 網路邊緣

利用低程式碼平台更快建置 AI 應用程式

低程式碼平台

無論目標是加速辦公室工作或透過聊天機器人令客戶刮目相看,現今的企業都愈加渴望部署 AI 應用程式。

AI 應用程式一旦推出,就能提高生產力。但是建立這種模式可能會耗費許多時間,特別是對於生成式 AI 解決方案而言,它採用大型語言模型和影像辨識系統,需要經過大量的微調和測試。

現在有更好的方法能讓 AI 解決方案開花結果。企業可以利用低程式碼平台更快開發自訂 AI 應用程式。低程式碼應用程式維護及自訂更加簡單,可適應未來的使用案例。

簡化 AI 解決方案開發

低程式碼 AI 平台開發者 Iterate.ai共同創辦人、數位長暨技術長 Brian Sathianathan 表示,在 AI 應用程式競爭激烈的世界,時機是一大關鍵因素。「許多公司都希望搶先推出創新解決方案。但這很難做到,因為他們的 IT 和技術團隊已經忙得不可開交了,」他表示。

Sathianathan 和同事創立 Iterate 是為了簡化 AI 應用程式的建置流程,將開發時間從數月縮短至數週。「平均而言,將 AI 的構想從概念化為現實的速度要快上八、九倍,」Sathianathan 說。「建立複雜度較低的 AI 解決方案,速度可提升高達 17 倍。」

Iterate 透過為各種 AI 功能(例如聊天機器人、付款系統或影像辨識)建立預先編寫的程式碼區塊來節省時間。開發者可利用公司的 Interplay 平台將程式碼區塊拖放至解決方案。

「這就像用卡車上提供的零件建造豪宅一樣,」Anton 表示。「我們把整個廚房、卧室和浴室寄給您,您三兩下就能組裝起來。」程式碼區塊分為金融、保險、零售和汽車等產業的自訂解決方案。

利用低程式碼平台節省時間

Interplay 的企業辦公室解決方案 GenPilot 讓組織利用內部資料與文件,建立自己的生成式 AI 大型語言模型(LLM)。許多 LLM 專門從事財務規劃或物流管理等任務,而 GenPilot 可讓他們選擇自己喜歡的模型。雖然 Chat GPT 和 Microsoft Copilot 等公共 LLM 解決方案也可用於生成式 AI 解決方案,但有些公司不願將資訊上傳給他們。

「公共模型在多租戶雲端環境中共享。我們提供一個安全的私密環境,讓公司在內部執行模型,」Sathianathan 表示。銀行、保險公司和其他組織也可以建立管理不同地區資料的合規規則。

對於員工而言,GenPilot 透過收集及解讀跨資料庫的文件,節省數小時的時間。例如,如果保險客戶向公司代表傳送電子郵件,但忘了提供保單編號,GenPilot 不僅能找到它,還能確定保單如何適用於問題、客戶為服務支付多少費用,以及變更是否會影響費用。然後,它會撰寫對客戶電子郵件的回覆。

「這套系統會以簡單的英文做出明智的回應,」Sathianathan 表示。公司可以制定語氣和技術等級的規則。

對於 PDF 等非結構化文件,員工可以使用另一款解決方案,即 Interplay OCR Reader。此應用程式將影像翻譯為機器可讀取的文字,並啟動工作流程。例如,銀行員工將客戶的掃描文件上傳至 OCR Reader 時,它會擷取相關資訊,並將其填入貸款申請表。

簡化零售 AI 管理

Iterate 最新的解決方案之一是 Interplay-Drive-Thru,可建立語音支援的聊天機器人,接受客戶訂單,並在繁忙的速食餐廳(QSR)提出追加銷售的推薦。

長期勞動力短缺通常需要 QSR 員工執行多項任務、包裝食品、收款,以及為店內和使用得來速的客戶提供服務。「聊天機器人能給他們多一點喘息空間,」Sathianathan 表示。訂單處理速度更快,縮短客戶的排隊時間,並提升餐廳的流通。

得來速和其他零售商可以利用 Interplay 的 LPR(車牌辨識)解決方案加速付款。選擇提供車牌和信用卡照片的客戶,一旦抵達參與的企業,電腦視覺攝影機即會識別。Interplay LPR符合 GDPR 和其他隱私法規,目前在歐洲 1,000 多家加油站和便利商店部署。

「它會自動為客戶打開油泵,向他們收取加油費。這些行動全在 30 毫秒內執行,」Sathianathan 表示。

Interplay 的 LLM 解決方案在 Intel® 處理器上部署。一如許多 LLM 解決方案,在高效能 CPU 上執行的應用程式比同樣需要 GPU 的企業更具成本效益。

「僅使用 CPU 的系統,每台機器的成本為2,500 至 4,000 美元。同等的 GPU/CPU 組合為 8,000 美元至 12,000 美元,」Sathianathan 表示。零售 IT 團隊也更熟悉標準作業系統,因而縮短訓練時間。

一旦部署低程式碼解決方案,開發者就能輕鬆地將相同的 Interplay 程式碼區塊移至新的解決方案,不必整理數百萬行程式碼來進行變更。此外,Interplay 的程式碼區塊使用了 Intel® OpenVINO 工具組,讓開發者能更高效地最佳化他們的 AI 應用程式。「使用 OpenVINO 可減少高達 350% 的運算能力。這是巨大的優勢,」Sathianathan 表示。

低程式碼 AI 解決方案的光明未來

Sathianathan 表示,現今的AI 應用程式可讓公司以前幾年無法想像的方式自動化流程。「AI 解決方案可以進行銷售電訪。也可以產生傳統上製作成本高昂的法律文件。」

無論是小型還是大型企業,都可以使用低程式碼建置組塊,快速且經濟實惠地開發此類解決方案。這有助於擴大 AI 應用程式的範圍,並創造公平的競爭環境,Sathianathan 表示:「很快您就會看到許多新的自動化功能正在開發。新創公司將能超越自身能力,成本也會持續下降,加惠所有人。」

 

本文由 insight.tech 編輯總監妮.貝內施(Georganne Benesch)編輯。